
GPU Point-to-Point 
Communication
Thomas Hines
Purushotham Bangalore



5-year Project Roadmap
PY 2020-21 PY 2021-22 PY 2022-23 PY 2023-24 PY 2024-2025

Partitioned P2P GPU SupportPartitioned P2P Prototype

Research Areas

Abstraction 
Development

Research 
Infrastructure and

Outreach

Neighbor Comm. 
OptimizationNeighbor Comm. Prototyping Partition/Neighbor 

Comm. Integration

Partition/Neighbor Comm. GPU Support

Partitioned CommunicationGPU SupportExaMPI Infrastructure

Partitioned CollectivesLocality-Aware GPU CollectivesMPI Advance Initial Release

Compilation of principles for 
new abstractions Spec. of Integrated Communication Primitives

MPIX Integrated Primitives

Integrated PrimitivesMPI0 Primitives

• To support efficient GPU communication
• What low-level primitives are necessary?
• What high-level abstractions are necessary?

• Focus here is to extract the requirements for these low-level 
primitives and high-level abstractions

2



Communication Abstraction Stack

3

Application
Beyond 

MPI

Beyond 
MPI

Beyond 
MPI

MPI0

Portals

Performance Portability Libraries

Beyond 
MPI

Beyond 
MPI

MPI0

UCX

MPI0

MPI0

MPI0

LibFabric

MPI 
Advance

MPI0

MPI0

Verbs

MPI 
Advance

MPI 
Advance

MPI

MPI0

LibMP



Halo Exchange (Regular Point-to-Point)
• A common communication pattern
• Most common implementation options:

• uses derived datatypes and posts irecvs and isends and waitall 
• Solution: Use GPU-Aware MPI library
• Issue: Poor performance due to derived datatypes 

• move pack/unpack to GPU (remove derived datatypes)
• Solution: Invoke a GPU kernel to perform pack/unpack
• Issues:

• One kernel or many kernels for pack/unpack to pipeline pack/send (recv/unpack)
• Where to write/read the pack/unpack kernel results

4



Motivation for Low-Level Primitives

• We don’t need the full complexity of MPI for halo exchanges
• Wildcard receives and tag matching unneeded
• Buffers are known ahead of time
• Pattern repeated many times – setup once and use repeatedly

• Support GPU triggering
• Support many low-level transports

5



Motivations for High-Level Abstractions

• Provide performance portable high-level abstractions that 
applications and other libraries could use

• Applications could call an optimized halo exchange library (MPI 
Advance - nearest neighbor collective call or variants)

• Halo exchange optimizations should not have to be implemented by 
every application independently and repeatedly 

6



Pulse

• 3D halo exchange benchmark to 
• Understand the requirements for low-level primitives
• Understand the requirements for high-level abstractions

• Explores many potential ways to transfer halos
• Explores different GPU triggering options
• Supports communication/computation overlap
• Supports both CUDA and HIP

7



Pulse - Structure

• Modular components to efficiently explore the design space
• Environment – sets up the grid and does the compute
• Packer – packs and unpacks to/from the grid and contiguous buffers
• Sender – transfers the buffers between ranks
• Executor – sets the overall pattern by calling the other components

8



Pulse - Options

• Grid dimensions
• Process grid dimensions
• Number of variables
• Halo depth
• Compute kernel length

• Exchange algorithm
• Compute granularity
• Pack granularity
• Message order
• Send/Receive order
• Memory location
• Irecv/Recv/Persistent

Setup Options Exchange Choices

9



50x50x50 Local Grid on Lassen
10



50x50x50 Local Grid on Tioga
11



200x200x200 Local Grid on Lassen
12



200x200x200 Local Grid on Tioga
13



Pulse Evaluation Summary
• Pack and send from device memory performs better
• One packing kernel performs better (more pronounced at smaller grid 

sizes)
• Explicit corner exchange is fastest
• For small grids 

• Performance pattern is similar on Lassen and Tioga
• Tioga is noticeably faster

• For large grids 
• Performance pattern is more uniform on Tioga
• Performance is comparable on the two machines

14



Preliminary Requirements

• Low-level primitives
• Portable performant GPU triggering
• Single setup, repeated use
• No message matching or message queues
• Pre-allocate buffers
• Structured, known communication pattern

• High-level abstractions
• Performance portable API for halo exchanges (e.g., halo exchange library)
• Efficient approaches to deal with non-contiguous data
• Better interfacing with other libraries (e.g., a C++ API)

15



Work in Progress
• More overlap choices
• Partitioned communication
• Complete runs on Tioga and come up with best practices (options) for 

GPU-GPU communication
• Low-level primitives

• performance portable low-level API for efficient GPU-GPU communication
• High-level abstraction 

• incorporate these optimizations/options into a halo exchange library (e.g., 
MPI Advance) and use it in a proxy/mini app

• Space filling curves [efficient data storage and access]

16


	GPU Point-to-Point Communication
	5-year Project Roadmap
	Communication Abstraction Stack
	Halo Exchange (Regular Point-to-Point)
	Motivation for Low-Level Primitives
	Motivations for High-Level Abstractions
	Pulse
	Pulse - Structure
	Pulse - Options
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Pulse Evaluation Summary
	Preliminary Requirements
	Work in Progress

