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• To support efficient GPU communication
• What low-level primitives are necessary?
• What high-level abstractions are necessary?

• Focus here is to extract the requirements for these low-level 
primitives and high-level abstractions
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Communication Abstraction Stack
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Halo Exchange (Regular Point-to-Point)
• A common communication pattern
• Most common implementation options:

• uses derived datatypes and posts irecvs and isends and waitall 
• Solution: Use GPU-Aware MPI library
• Issue: Poor performance due to derived datatypes 

• move pack/unpack to GPU (remove derived datatypes)
• Solution: Invoke a GPU kernel to perform pack/unpack
• Issues:

• One kernel or many kernels for pack/unpack to pipeline pack/send (recv/unpack)
• Where to write/read the pack/unpack kernel results
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Motivation for Low-Level Primitives

• We don’t need the full complexity of MPI for halo exchanges
• Wildcard receives and tag matching unneeded
• Buffers are known ahead of time
• Pattern repeated many times – setup once and use repeatedly

• Support GPU triggering
• Support many low-level transports
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Motivations for High-Level Abstractions

• Provide performance portable high-level abstractions that 
applications and other libraries could use

• Applications could call an optimized halo exchange library (MPI 
Advance - nearest neighbor collective call or variants)

• Halo exchange optimizations should not have to be implemented by 
every application independently and repeatedly 
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Pulse

• 3D halo exchange benchmark to 
• Understand the requirements for low-level primitives
• Understand the requirements for high-level abstractions

• Explores many potential ways to transfer halos
• Explores different GPU triggering options
• Supports communication/computation overlap
• Supports both CUDA and HIP
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Pulse - Structure

• Modular components to efficiently explore the design space
• Environment – sets up the grid and does the compute
• Packer – packs and unpacks to/from the grid and contiguous buffers
• Sender – transfers the buffers between ranks
• Executor – sets the overall pattern by calling the other components
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Pulse - Options

• Grid dimensions
• Process grid dimensions
• Number of variables
• Halo depth
• Compute kernel length

• Exchange algorithm
• Compute granularity
• Pack granularity
• Message order
• Send/Receive order
• Memory location
• Irecv/Recv/Persistent

Setup Options Exchange Choices
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50x50x50 Local Grid on Lassen
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50x50x50 Local Grid on Tioga
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200x200x200 Local Grid on Lassen
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200x200x200 Local Grid on Tioga
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Pulse Evaluation Summary
• Pack and send from device memory performs better
• One packing kernel performs better (more pronounced at smaller grid 

sizes)
• Explicit corner exchange is fastest
• For small grids 

• Performance pattern is similar on Lassen and Tioga
• Tioga is noticeably faster

• For large grids 
• Performance pattern is more uniform on Tioga
• Performance is comparable on the two machines
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Preliminary Requirements

• Low-level primitives
• Portable performant GPU triggering
• Single setup, repeated use
• No message matching or message queues
• Pre-allocate buffers
• Structured, known communication pattern

• High-level abstractions
• Performance portable API for halo exchanges (e.g., halo exchange library)
• Efficient approaches to deal with non-contiguous data
• Better interfacing with other libraries (e.g., a C++ API)
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Work in Progress
• More overlap choices
• Partitioned communication
• Complete runs on Tioga and come up with best practices (options) for 

GPU-GPU communication
• Low-level primitives

• performance portable low-level API for efficient GPU-GPU communication
• High-level abstraction 

• incorporate these optimizations/options into a halo exchange library (e.g., 
MPI Advance) and use it in a proxy/mini app

• Space filling curves [efficient data storage and access]
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